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I have a molecule. 

Where are the electrons going to go? 

It’s water. It has 𝑛 = 10 electrons. 

Knowing this is helpful for making medicines, fuels, materials, etc. 



According to theory I will describe, electrons occupy molecular orbitals,  
and nature tends to assign electrons to orbitals with the lowest energy.  

These numbers, though plausible, aren’t experimentally observed… 

The 5 orbitals with the lowest 
energy are (doubly) occupied. 



𝒉𝐹𝑪 = 𝑺𝑪𝝐 

𝒉𝐹 = 𝒉 + 𝑮 

…they were computed in about 3 seconds on my desktop PC. 

Let: 

𝝓 = (𝜙1, … , 𝜙𝑚) 

𝑹 𝑟, 𝑠, 𝑡, 𝑢 =   
𝜙𝑟(𝑜1)𝜙𝑠(𝑜1)𝜙𝑡(𝑜2)𝜙𝑢(𝑜2)

|𝑜1 − 𝑜2|
𝑑𝑜1𝑑𝑜2 

Precompute: 

Given:  

𝒉 =  𝝓𝑇ℎ𝝓𝑑𝑜1 ⋅⋅⋅ 𝑑𝑜𝑚 

𝑺 =  𝝓𝑇𝝓𝑑𝑜1 ⋅⋅⋅ 𝑑𝑜𝑚 

Solve for 𝑪, 𝝐 in: 

𝑮𝑟,𝑠 =  𝑪𝑪𝑇 𝑡,𝑢(2𝑹 𝑟, 𝑠, 𝑡, 𝑢 − 𝑹 𝑟, 𝑢, 𝑡, 𝑠 )

𝒎

𝒕,𝒖=𝟏

 

closed-shell matrix Hartree-Fock equation  



Today’s goal: implement water. 

Physically motivate aforementioned equation. 

“Fill in the blanks” for water. 

Use a simple iterative algorithm. 



Schrödinger equation 

fix nuclei 

electronic Schrödinger equation 

time-dependent  Schrödinger equation 

ignore relativity 

replace differential equation by algebraic equation 

introduce antisymmetry 

determinants 

single determinant  

differential Hartree-Fock equation 

solution as minimization 

finite basis set 

closed shell 

single determinant approximation 

closed-shell matrix Hartree-Fock equation 

focus on equilibrium 

model maths 



Pair these simplifications with Schrödinger’s mechanics to get… 

Each of the 𝑛 electrons has: 
- position (𝑜𝑖 ∈ ℝ3) and spin (which we’ll gloss over; watch for 𝜎) 
- low mass, so we can ignore relativistic effects 
- high velocity, so we can pretend the nuclei are stationary 

First we’ll simplify the model without worrying about approximation quality. 



𝐻:wavefunction → wavefunction is a Hamiltonian, a known 
operator representing observable aspects of the molecular setup.  

𝐻 𝑜1, … , 𝑜𝑛 = ℎ 𝑜1   +     
1

|𝑜𝑖 − 𝑜𝑗|

 

𝑗<𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

kinetic energy of electron electron-electron repulsion 

nuclei-electron attraction 

 Ψ∗Ψ𝑑𝑥1 ⋅⋅⋅ 𝑑𝑥𝑛
 

𝑅
 is the probability that the electrons are in 𝑅. 

 

Ψ: ℝ3 → … → ℝ3 →  ℂ is a wavefunction (eigenfunction) 

𝐻(Ψ 𝜎1, … , 𝜎𝑛 ) = 𝐸 ⋅ Ψ 𝜎1, … , 𝜎𝑛  

electronic Schrödinger equation 

𝐸:ℝ is an energy (eigenvalue)  



The electrons are also unlabeled, so for any permutation operator  𝜋: 

That is, the wave function needs to be antisymmetric.  

|𝜋(Ψ) 𝜎1, … , 𝜎𝑛 |2 = |Ψ 𝜎1, … , 𝜎𝑛 |2 

We want to solve for Ψ so there are two possibilities: 

𝜋(Ψ) = Ψ and 𝜋(Ψ) = −Ψ 

Asserting (with physical motivation) that 𝑠 = −1, we get: 

𝜋(Ψ) = (−1)parity( 𝜋)Ψ 

A permutation is just a sequence of transpositions, so consider: 

𝜋 Ψ 𝜎1, 𝜎2, … , 𝜎𝑛 = sΨ 𝜎2, 𝜎1, … , 𝜎𝑛  



We’d like to factorize (without yet making approximations) the 𝑛-electron  Ψ 
into a product of 1-electron  𝜒𝑖’s. But simple products aren’t antisymmetric. 

Completeness yields a product  expansion which is 
antisymmetric, but the coefficients are redundant.  

Ψ 𝜎1, … , 𝜎𝑛 = 𝑐𝑖1,…,𝑖𝑛𝜒𝑖1 𝜎1 ⋅⋅⋅ 𝜒𝑖𝑛 𝜎𝑛
∞

𝑖1,…,𝑖𝑛=1
 

Φ𝐾 𝜎1, … , 𝜎𝑛 =

𝜒𝑖1(𝜎1) … 𝜒𝑖1(𝜎𝑛)

⋮ ⋱ ⋮
𝜒𝑖𝑛(𝜎1) … 𝜒𝑖𝑛(𝜎𝑛)

 Ψ ⋅ =  𝐷𝐾Φ𝐾(⋅)

∞

𝐾=1

 

Explicitly enforce antisymmetry upon product with operator: 

antisym ((𝜒𝑖1 ⋅1 ⋅⋅⋅ 𝜒𝑖𝑛 ⋅𝑛 )(𝜎1, … , 𝜎𝑛) 

where 

Φ𝐾 = where 

  

antisym(⋅) =  −1 parity( 𝜋)𝜋(⋅)

all  𝜋

 

is a determinant, and the 𝜒𝑖  are taken to be orthonormal WLOG. 



Ψ 𝜎 ≈ Φ(𝜎) 

We will phrase a significant approximation as a truncation of Ψ’s expansion.  

Another way to phrase it is as a simplification of  𝐻: each electron no longer 
individually interacts with the others; it feels only the mean of the others. (This is 
why product factorizations are sometimes called “mean-field” approximations.) 

single determinant approximation 



We’ve lost completeness; now is a good time to define approximation quality. As 
previously mentioned, we seek solutions Ψ  (defined by Φ and in turn by the 𝜒𝑖)   
corresponding to low energy E .  

E =       Φ∗𝐻(Φ)𝑑𝜎1…𝑑𝜎𝑛  Φ∗Φ𝑑𝜎1…𝑑𝜎𝑛  

=            𝜒𝑖
∗ 𝜎 ℎ 𝑜 𝜒𝑖 𝜎 𝑑𝜎

𝑛

𝑖=1

       

 

     + 
1

2
   

𝜒𝑖
∗ 𝜎1 𝜒𝑗

∗ 𝜎2 𝜒𝑖 𝜎1 𝜒𝑗 𝜎2

𝑜1 − 𝑜2
𝑑𝜎1𝑑𝜎2

𝑛

𝑖,𝑗=1

  

 

      −
1

2
   

𝜒𝑖
∗ 𝜎1 𝜒𝑗

∗ 𝜎2 𝜒𝑗 𝜎1 𝜒𝑖 𝜎2

𝑜1 − 𝑜2
𝑑𝜎1𝑑𝜎2

𝑛

𝑖,𝑗=1

 

 

energy of electron 𝑖 in presence of nuclei but in 
absence of other electrons  

mean repulsions between electrons 
occupying 𝜒𝑖  and 𝜒𝑗 

“exchange terms” from determinant 
 

a normalized mean 



Take that expression for E   and treat it as objective. Enforce orthonormality of 𝜒𝑖  with 
Lagrange multipliers. Use variational method (not just “take derivative, set to zero”) to 

find stationary points. This shows that the optimal 𝜒𝑖  must satisfy:  

where 𝐸1 is the true ‘ground state’ energy. Since the solution can be expressed using 
minimization, we can’t get in trouble by performing it.  

It is easy to show that for all Ψ : 

E ≥ 𝐸1 

differential Hartree-Fock equation  

ℎ𝐹𝜒𝑖 = 𝜖𝑖𝜒𝑖 

where ℎ𝐹 is similarly split up into three terms.  



𝜒𝑖 𝑜 ≈  𝐶𝑘,𝑖𝜙𝑘(𝑜) 

𝑚

𝑘=1

 

Now we will make a finite computational approximation which will yield matrix equations. 

𝜙𝑘 𝑜 = 𝑑𝑗,𝑘𝜂𝑗(𝑜)

𝑏𝑘

𝑗=1

 

𝜂𝑗 𝑜 = 𝑁(𝑜1−𝛾1)
𝑎1(𝑜2−𝛾2)

𝑎2(𝑜3 − 𝛾3)
𝑎3 exp(−𝛼| 𝑜 − 𝛾 |2) 

We will handcraft the basis from sums 

𝑁:ℝ: is normalization.  
𝛾:ℝ3 is position of nucleus 
𝑎𝑖: ℤ

: describe angular momentum  
𝛼:ℝ contracts as usual 

of primitives which are Gaussians multiplied by some ‘angular momentum’ terms: 

We’ll assume electrons occupy orbitals in pairs, which effectively halves the basis size. 



This is a basis set called 6-31G. 

H 1s n: 
H 1s d:  
H 1s n: 
H 1s d: 
O 1s: 
O 2s n: 
O 2s d: 
O 2px n: 
O 2px d: 
O 2py n: 
O 2py d: 
O 2pz n: 
O 2pz d: 
 
7 symmetry adapted basis functions of A1  symmetry. 
 There are     0 symmetry adapted basis functions of A2  symmetry. 
 There are     2 symmetry adapted basis functions of B1  symmetry. 
 There are     4 symmetry adapted basis functions of B2  symmetry 
 
13 basis functions,    30 primitive gaussians,    13 cartesian basis functions 
     5 alpha electrons        5 beta electrons 
 
2260 integrals produced 
 
The core orbitals get 1 function, and the valence orbitals get 2 (a narrow and a diffuse). The only core orbitals here are the 1s of oxygen.  
H1: 1s 1 narrow and 1 diffuse = 2  
H1: 1s 1 narrow and 1 diffuse = 2  
O: 1s 1 function = 1  
     2s 1 narrow and 1 diffuse = 2  
    2p 3 narrow and 3 diffuse = 6 (3 is for px, py, pz orbitals) 
 
6 primitive Gaussians for each core atomic orbital 
Valence consist of two basis functions each, 1st one linear comb of 3 primitive Gaussians, 2nd one just a primitive gaussian 
 
H1: 3 + 1 = 4 
H2: 3 + 1 = 4 
O: 6 
     3 + 1 = 4 
     3(3 + 1) = 12 
 
 *********************************************************************************************************************************** 
 *             ATOMIC CENTER             *        ATOMIC ORBITAL       *                     GAUSSIAN FUNCTIONS                    * 
 *********************************************************************************************************************************** 
 *                                       * FUNCTION    SHELL    SCALE  *                                                           * 
 *    ATOM   X-COORD  Y-COORD  Z-COORD   *  NUMBER     TYPE     FACTOR *  EXPONENT    S-COEF      P-COEF      D-COEF      F-COEF   * 
 *********************************************************************************************************************************** 
 *     O      0.00000  0.00000  0.21558                                                                                            * 
+                                                1     S         1.00                                                                
+                                                                      0.548467D+040.831724D+000.000000D+000.000000D+000.000000D+00  
 *                                                                     0.825235D+030.153082D+010.000000D+000.000000D+000.000000D+00* 
 *                                                                     0.188047D+030.247715D+010.000000D+000.000000D+000.000000D+00* 
 *                                                                     0.529645D+020.325628D+010.000000D+000.000000D+000.000000D+00* 
 *                                                                     0.168976D+020.279289D+010.000000D+000.000000D+000.000000D+00* 
 *                                                                     0.579964D+010.954938D+000.000000D+000.000000D+000.000000D+00* 
 *                                           2-  5     SP        1.00                                                              * 
+                                                                      0.155396D+02-.617934D+000.311694D+010.000000D+000.000000D+00  
 *                                                                     0.359993D+01-.275721D+000.240144D+010.000000D+000.000000D+00* 
 *                                                                     0.101376D+010.814208D+000.105436D+010.000000D+000.000000D+00* 
 *                                           6-  9     SP        1.00                                                              * 
+                                                                      0.270006D+000.266956D+000.277432D+000.000000D+000.000000D+00  
 *---------------------------------------------------------------------------------------------------------------------------------* 
 *     H      0.00000  1.47467 -0.86231                                                                                            * 
+                                               10     S         1.00                                                                
+                                                                      0.187311D+020.214935D+000.000000D+000.000000D+000.000000D+00  
 *                                                                     0.282539D+010.364571D+000.000000D+000.000000D+000.000000D+00* 
 *                                                                     0.640122D+000.415051D+000.000000D+000.000000D+000.000000D+00* 
 *                                              11     S         1.00                                                              * 
+                                                                      0.161278D+000.181381D+000.000000D+000.000000D+000.000000D+00  
 *---------------------------------------------------------------------------------------------------------------------------------* 
 *     H      0.00000 -1.47467 -0.86231                                                                                            * 
+                                               12     S         1.00                                                                
+                                                                      0.187311D+020.214935D+000.000000D+000.000000D+000.000000D+00  
 *                                                                     0.282539D+010.364571D+000.000000D+000.000000D+000.000000D+00* 
 *                                                                     0.640122D+000.415051D+000.000000D+000.000000D+000.000000D+00* 
 *                                              13     S         1.00                                                              * 
+                                                                      0.161278D+000.181381D+000.000000D+000.000000D+000.000000D+00  
 *********************************************************************************************************************************** 

Atom Shell Function Width Primitive coefficients 

H 1s 𝜙1 Narrow 0.187311D+020.214935D 

0.282539D+010.364571D 

0.640122D+000.415051D 

𝜙2 Diffuse 0.161278D+000.181381D 

H 1s 𝜙3 Narrow 0.187311D+020.214935D 

0.282539D+010.364571D 

0.640122D+000.415051D 

𝜙4 Diffuse 0.161278D+000.181381D 

O 1s 𝜙5 N/A 0.548467D+040.831724D+000.000000D 

0.825235D+030.153082D+010.000000D 

0.188047D+030.247715D+010.000000D 

0.529645D+020.325628D+010.000000D 

0.168976D+020.279289D+010.000000D 

0.579964D+010.954938D+000.000000D 

2s 𝜙6 Narrow 0.155396D 

0.359993D 

0.101376D 

𝜙7 Diffuse 0.270006D 

2px 𝜙8 Narrow 0.155396D+02-.617934D 

0.359993D+01-.275721D 

0.101376D+010.814208D 

𝜙9 Diffuse 0.270006D+000.266956D 

2py 𝜙10 Narrow 0.155396D+02-.617934D+000.311694D 

0.359993D+01-.275721D+000.240144D 

0.101376D+010.814208D+000.105436D 

𝜙11 Diffuse 0.270006D+000.266956D+000.277432D 

2pz 𝜙12 Narrow 0.155396D+02-.617934D+000.311694D+010.000000D 

0.359993D+01-.275721D+000.240144D+010.000000D 

0.101376D+010.814208D+000.105436D+010.000000D 

𝜙13 Diffuse 0.270006D+000.266956D+000.277432D+000.000000D 

It encodes physical intuition, computational 
expedience, and deprecated ideas.  



𝒉𝐹𝑪 = 𝑺𝑪𝝐 

𝒉𝐹 = 𝒉 + 𝑮 

Let: 

𝝓 = (𝜙1, … , 𝜙𝑚) 

𝑹 𝑟, 𝑠, 𝑡, 𝑢 =   
𝜙𝑟(𝑜1)𝜙𝑠(𝑜1)𝜙𝑡(𝑜2)𝜙𝑢(𝑜2)

|𝑜1 − 𝑜2|
𝑑𝑜1𝑑𝑜2 

Precompute: 

Given:  

𝒉 =  𝝓𝑇ℎ𝝓𝑑𝑜1 ⋅⋅⋅ 𝑑𝑜𝑚 

𝑺 =  𝝓𝑇𝝓𝑑𝑜1 ⋅⋅⋅ 𝑑𝑜𝑚 

Solve for 𝑪, 𝝐 in: 

𝑮𝑟,𝑠 =  𝑪𝑪𝑇 𝑡,𝑢(2𝑹 𝑟, 𝑠, 𝑡, 𝑢 − 𝑹 𝑟, 𝑢, 𝑡, 𝑠 )

𝒎

𝒕,𝒖=𝟏

 

closed-shell matrix Hartree-Fock equation        

Guess 𝑪. 

(unless converged) 

𝑚4 of these 

eigenvalue equation, but we need to get rid of 
𝑺 by orthogonalizing  basis functions. This isn’t 
done at the outset because we don’t want to 
change the basis of 𝑹.  

algorithm 



It’s a small world. 

 

• Modeling (local) interactions 

• Choosing basis sets 

• Evaluating integrals 

• Iteratively solving matrix equations 

• Oh, and the industry-standard software (used 
in this presentation) originated from CMU 

 


