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| have a molecule.

*

It’s water. It has n = 10 electrons.

Where are the electrons going to go?

Knowing this is helpful for making medicines, fuels, materials, etc.



According to theory | will describe, electrons occupy molecular orbitals,
and nature tends to assign electrons to orbitals with the lowest energy.

13 (al)— |— 1.88562
12 (b2)— |— 1.37991
11 (al)— |— 1.21097
10 {bl)—~ |— 1.16571
9{al)— — 1.1e044
8 (b2)— — 1.07258
Pib2y— p— 0.29730
6ial)— — D.20221
5 (b1) —]k— -0.49926 The 5 orbitals with the lowest
s (a1 —fb— —0.c531c  energyare (doubly) occupied.
3 (b2) —{] p|— -0.71025
2 (a1) —{] b— -1.34730
1 (=1) —4 k}—-20.55982

These numbers, though plausible, aren’t experimentally observed...



...they were computed in about 3 seconds on my desktop PC.

Given:

¢ = (b1, Om)
Precompute:

h = jquhcl) doy - doy,

S = jquqbdol - do,

B ¢r(01)Ps(01) P (02) Py (02)

R(r,s, t,u) = j] 0r — 0] do,do,
Let: .

G,s = Z (€C")ey(2R(r,s,t,u) — R(r,u,t,5))

tu=1
hf =h+G

Solve for C, € in:

hf'C = SCe

closed-shell matrix Hartree-Fock equation



Today’s goal: implement water.

Physically motivate aforementioned equation.
“Fill in the blanks” for water.

Use a simple iterative algorithm.



time-dependent Schrodinger equation
ignore relativity

focus on equilibrium

Schrodinger equation

fix nuclei

electronic Schrodinger equation
introduce antisymmetry

determinants
single determinant

single determinant approximation

solution as minimization

differential Hartree-Fock equation

finite basis set

replace differential equation by algebraic equation

closed shell

closed-shell matrix Hartree-Fock equation



First we'll simplify the model without worrying about approximation quality.

Each of the n electrons has:
- position (0; € R3) and spin (which we’ll gloss over; watch for o)

- low mass, so we can ignore relativistic effects
- high velocity, so we can pretend the nuclei are stationary

Pair these simplifications with Schrodinger’s mechanics to get...



HW(ay, ..., 0n)) = E - ¥(oy, ..., 00)

electronic Schrddinger equation

E:Ris an energy (eigenvalue)

¥: (R3 - ... > R3) - Cisawavefunction (eigenfunction)

fR Y*Ydx, --- dx, is the probability that the electrons are in R.

H:wavefunction —» wavefunction is a Hamiltonian, a known
operator representing observable aspects of the molecular setup.

H(oq, ..., On)_zh(ol) T zzlol_of

=1 j<i
kinetic energy of electron electron-electron repulsion

nuclei-electron attraction



The electrons are also unlabeled, so for any permutation operator mu:
|T[(1P)(0'1, ey O-n)lz — |1P(O-1; ey Un)lz

We want to solve for ¥ so there are two possibilities:

(W) =¥Yand n(¥) = -V

A permutation is just a sequence of transpositions, so consider:

n(W)(aq, 0y, ..., 0,) = s¥(0y, 04, ..., Oy)
Asserting (with physical motivation) that s = —1, we get:
n—(qj) — (_1)parity( TL')\_I_]

That is, the wave function needs to be antisymmetric.



We'd like to factorize (without yet making approximations) the n-electron W
into a product of 1-electron y;’s. But simple products aren’t antisymmetric.

Completeness yields a product expansion which is
antisymmetric, but the coefficients are redundant.

Y(oy,...,0n) = Z o CiyinXiy (01) - Xiy, (o)
l ln=

1reee n—l

© Xi;(01) . Xi (on)
Y() = Z Dy ®r(-) where ®dg(oy,..,0,) = : :
K=1 Xi,(01) - Xi,(On)

is a determinant, and the y; are taken to be orthonormal WLOG.

Explicitly enforce antisymmetry upon product with operator:

Py = antisym (1, (1) = Xy (n))(01,,0,) where antisym() = ) (~D)P(Pr()

all ©



We will phrase a significant approximation as a truncation of ¥’s expansion.

Y(o) = ¢(0)

single determinant approximation

Another way to phrase it is as a simplification of H: each electron no longer
individually interacts with the others; it feels only the mean of the others. (This is
why product factorizations are sometimes called “mean-field” approximations.)




We’ve lost completeness; now is a good time to define approximation quality. As
previously mentioned, we seek solutions P (defined by ® and in turn by the Xi)
corresponding to low energy E.

e
|

] O*H(d)doy ... dO‘n/J d*ddo; ...do, a normalized mean

absence of other electrons

n
. Z j ¥ *(a)h(o))( (O‘)dO‘ energy of electron i in presence of nuclei but in
- i i

mean repulsions between electrons
occupying x; and x;

2 z JJXL (01))(] (02))(1(01))(](02)

d0'1d0'2
— 0q]

[,j=1

z J JXl (0-1))(] (UZ)X] (01)xi(02) do,dao, “exchange terms” from determinant

1 — 0
= 2|



It is easy to show that for all P:

~

E>E,

where E; is the true ‘ground state’ energy. Since the solution can be expressed using
minimization, we can’t get in trouble by performing it.

Take that expression for E and treat it as objective. Enforce orthonormality of y; with
Lagrange multipliers. Use variational method (not just “take derivative, set to zero”) to
find stationary points. This shows that the optimal y; must satisfy:

hxi = eixi

—— differential Hartree-Fock equation ——

where hf is similarly split up into three terms.



Now we will make a finite computational approximation which will yield matrix equations.

m
xi(o) = Z Ck,iPx(0)
k=1
We will handcraft the basis from sums

bk
¢y (0) = Z d;jin;(o)
=

of primitives which are Gaussians multiplied by some ‘angular momentum’ terms:

nj(0) = N(01—y1)* (02—Y2)* (03 — ¥3)* exp(—allo — y||?)

N:R* is normalization.

y: R3 is position of nucleus

a;: Z* describe angular momentum
a: R contracts as usual

We’ll assume electrons occupy orbitals in pairs, which effectively halves the basis size.



This is a basis set called 6-31G.

It encodes physical intuition, computational
expedience, and deprecated ideas.

Atom | Shell Function Width Primitive coefficients
H 1s [N Narrow 0.187311D+020.214935D
0.282539D+010.364571D
0.640122D+000.415051D
b, Diffuse 0.161278D+000.181381D
H 1s b3 Narrow 0.187311D+020.214935D
0.282539D+010.364571D
0.640122D+000.415051D
b4 Diffuse 0.161278D+000.181381D
o 1s o N/A 0.548467D+040.831724D+000.000000D
0.825235D+030.153082D+010.000000D
0.188047D+030.247715D+010.000000D
0.529645D+020.325628D+010.000000D
0.168976D+020.279289D+010.000000D
0.579964D+010.954938D+000.000000D
2s b6 Narrow 0.155396D
0.359993D
0.101376D
o Diffuse 0.270006D
2px bg Narrow 0.155396D+02-.617934D
0.359993D+01-.275721D
0.101376D+010.814208D
Xy Diffuse 0.270006D+000.266956D
2py b10 Narrow 0.155396D+02-.617934D+000.311694D
0.359993D+01-.275721D+000.240144D
0.101376D+010.814208D+000.105436D
b11 Diffuse 0.270006D+000.266956D+000.277432D
2pz b12 Narrow 0.155396D+02-.617934D+000.311694D+010.000000D
0.359993D+01-.275721D+000.240144D+010.000000D
0.101376D+010.814208D+000.105436D+010.000000D
b13 Diffuse 0.270006D+000.266956D+000.277432D+000.000000D




Given:

¢ = (D1, -, D)
Precompute:
h = Jr ¢Thp do, -+ do,,
[ m* of these
S = J ¢TPpdo, - do,, /
(0] (0] (0] (0]
R(r.s, t.u) = j j Gr(01)Ps(01) P (02) Py (02) do, do,
|0y — 03]
Guess C.
—> Let: m
G,s = Z (CC")ey (2R(7,s,t,u) — R(r,u,t,5))
tu=1
hf =h+G
eigenvalue equation, but we need to get rid of
Solve for C, € in: S by orthogonalizing basis functions. This isn’t
done at the outset because we don’t want to
hfC = SCe change the basis of R.

— (unless converged) _
algorithm

closed-shell matrix Hartree-Fock-eetation



Modeling (local) interactions
Choosing basis sets

Evaluating integrals

Iteratively solving matrix equations

Oh, and the industry-standard software (used
in this presentation) originated from CMU

It’s a small world.



