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[HE MACHINE LEARNING TRAGEDY

DRAMATIC STRUCTURE IN IV ACTS

I. THE GODS POSE A LEARNING PROBLEM

[I. THE PROTAGONIST FINDS A STATISTICALLY
IDEAL WAY TO SOLVE IT

I11.HIS WAY IS CURSED BY NP-HARDNESS

IV. HE IS BANISHED TO STATISTICAL INFERIORITY



T he sparsity recovery problem

The setting: h* € RP is unknown
supp(h™) are the positions of its S nonzero entries

S is a constant fraction of D

Givenfor 1 <m < M: xup~N(0,1)°
VYim = (h*, X)) + gm for some g,,~N(0, %)

Asymptotic reliability: P(supp(h) # supp(h*)) » 0asM,S,D —

with respect to the randomness of x,,, and g,,



A direct approach is optimal... we

M = Q(S) is necessary for asymptotic reliability.

M = O(S) is sufficient for asymptotic reliability of:

min. = S, xn) — ym)? st |IRllg < S (DIRECT,)

Still NP-hard when the numerical values of the
inputs are polynomial in their bit-lengths.

..but (generally) Tstrongly NP-hard.




Convex relaxation is suboptimal.

[WO06]: M = ©(Slog(D — S)) is necessary for asymptotic reliability of

mhin. %Zm«h; xm) — ym)z + Allhlll

(LAssO)




Let's tweak DIRECT,

Actually, a linear variant inheriting strong NP-hardness. (It's easier to write down.)

.1
min. ﬁzm I(h, X)) — V| st |R]lg < S (DIRECT,)

Assumption for talk: DIRECT; = DIRECT,

I

Asymptotically reliable at same rate, up to constants.

Theorem: a randomized polynomial-time algorithm is
asymptotically reliable given M = 0(S).



1. DIRECT, = ROUND, where the decision variables are rounded
to take polynomially many values..
use LLASSO as a starting point to seed the algorithm



— DIRECT,
min. )., €m /M
St. vme{1,..,M}, de{1,..,2D}, d €{1,...,D}

Ly = D + Ny

(h, Xm) — Ym = Pm — N

hg <1z-7?

Iy +1,.p<1

Yalg < S

Loy Doy Ny g = 0

I; € {0,1}

The real-valued decision variables can take uncountably many values.



N

R (the solution of DIRECT, )

whp for some constant C’

|R* =], < Clog(...)

T

h Bernstein-style empirical process concentration [BG11]

Lasso bound [NRWY10] M linearin S

l ,S logD l
M

In—h*|l, < Co x g%logD

whp for appropriate A and some constant C

1 (the solution of LASSO)



Na (k bit precision)

0v g — 0(logD) = ag j’d by = 7i7 + O(log D)
hy € c R

We can choose k so that the number of points is polynomial,

yet ||ﬁ — H/2k||2 is exponentially small.



—— ROUND (in progress)

min. )., €m /M
St. vme{1,..,M}, d€{1,..,2D}, d € {1, ...,D}
Ly = D + Ny
(H/2¥, Xm) — Ym = Pm — N
Hy; <1;B4
Ly +1,.p<1
Yalg < S

Ly Dy Ny, = 0
Hd (S {Ad' ...,Bd}
I; € {0,1}




Actually need to
replace with
inequalities and
introduce more
variables. Won't
bother, since it will
simplify anyway.

—— ROUND (almost)
min. )., L,, /M
St. vme{1,..,M}, d€{1,..,2D}, d € {1, ...,D}
L, =PB, + N,
(H,x, 2% —y,2" ~ P, — N,
H; <1;B4
Ly +1,.p<1
Yalg < S
Ly, Py, Ny, € ...}
H; € {A; ...,B;}
I; € {0,1}




—— ROUND (almost)
min. )., L,, /M
St. vme{1,..,M}, d€{1,..,2D}, d € {1, ...,D}
L, =PB, + N,
(H,x, 2%y —y,2¥ ~ P, — N,
H; <1;B4
Ly +1,.p<1
Yalg < S
Ly, Py, N € ...}
H; € {A; ...,B;}
I; € {0,1}




1. DIRECT, = ROUND, where the decision variables are rounded
to take polynomially many values.
use LLASSO as a starting point to seed the algorithm

2. ROUND = SMOOTHROUND, which is smoothed by a random
perturbation.

may perturb a random program



—— SMOOTHROUND (almost)
min. )., L,, /M
St. vme{1,..,M}, de{1,..,2D}, d' €{1,...,D}
L, =P, + N,
(H,x, 2%y —z,,2" ~ P, — N,
H; <1;B4
Ly +1,.p <1
2ala =S
Ly, Py, Ny € ...}
Hy € {44, B4}
I; € {0,1}

Zm = Vm + pm Where p,~N(0,7%). Adding it in
allows us to ‘restart’ without drawing new sample.




1.

DIRECT,; = ROUND, where the decision variables are rounded
to take polynomially many values.
use LLASSO as a starting point to seed the algorithm

ROUND = SMOOTHROUND, which is smoothed by a random
perturbation.

may perturb a random program

SMOOTHROUND can be solved in polynomial time if ROUND
can be solved in pseudopolynomial time.

perturbed combinatorial problems have few optimal solutions

Polynomial in the numerical values of the inputs.
With this power we can solve some weakly NP-hard problems.



Smoothing leads to poly-size margins; the solution will still be ® even if the
inputs (i.e. x,, and z,,) are truncated to logarithmic length i.e. polynomial value.



1.

DIRECT,; = ROUND, where the decision variables are rounded
to take polynomially many values.
use LLASSO as a starting point to seed the algorithm

ROUND = SMOOTHROUND, which is smoothed by a random
perturbation.

may perturb a random program

SMOOTHROUND can be solved in polynomial time if ROUND
can be solved in pseudopolynomial time.

perturbed combinatorial problems have few optimal solutions

ROUND can be solved in pseudopolynomial time.
input can't encode complex dependencies



—— ROUND
min. )., L, /M
St. vme{1,..,M}, de{1,..,2D}, d' €{1,..,D}
L, =P, + N,
(H,%,2%) —y..2¥ =P — N,
Hq + ¢q = I4Bg
Iy +1grip +Ya =1
Yalg +¥P =S
Ly, Py, Ny, €4...}
H; € {Ag, ..., B}
I; € {0,1}
ba, Par, ¥ € Z°F




Since M =
Q(s) = Q(D)
we may
assume there
are as many
rows as
columns.

Lm Nm Pm Hdr Hdr+D Idr Idr+D ¢d/ lpd/ ¥
~— 1 -1 -1
% 1 1|1 1
= 1| 1 1
w —_— —_—
w L | -1 |(Xmar| Xma'+p
S

It mostly encodes a matrix of iid N(0,1) random variables.

S| O




The inability to encode complex dependencies is captured by constant branchwidth.

K1 K>

K —

~—
A branch decomposition <>)/ is a binary tree on the columns

Cutting an edge partitions the columns into K; and K,

branchwidth = min max (rank(K;) + rank(K,) —rank(K) + 1)

decompositions  cuts



[CGO06]: An integer linear program in equational form can be solved in
pseudopolynomial time if its decision variables take polynomially many
values and its constraint matrix has constant branchwidth.

Done.



Conclusions

Don't let worst-case hardness scare you away from average-case problems.

In order to obtain better statistical guarantees, you can exploit:
* the huge amount of work on relaxations (don't just toss it out!),
e the instable, random nature of the optimization program,
* simple structure of the input.
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